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This paper presents experimental data, a fuzzy logic (FL) model, a mathematical model (MM) and a cou-
pled MM–FL model for a laboratory scale electrodialysis (ED) cell. The aim was to predict separation
percent (SP) of zinc ions as a function of concentration, temperature, flow rate and voltage. At first, a
Sugeno type FL inference system was applied to model zinc ions separation from wastewater using ED.
FL modeling results showed that there is an excellent agreement between the experimental data and the
uzzy logic
lectrodialysis
athematical modeling

oupled model
inc ions separation

predicted values, with mean squared relative error (MSRE) of less than 0.01. Then, the results of a previ-
ously developed MM were presented. The MM related SP to hydrodynamic dimension of the ED cell and
operation conditions via two distinct parameters. This ability favored the MM for scale-up applications.
However, based on MSRE of the MM (about 24), it could not obviously predict the experimental data as
well as FL. Hence, as a final step, the MM was coupled with FL to achieve benefits of both. It was found out
that the developed coupled model (MM–FL) is able to predict SP of zinc ions at all operating condition
and almost every dimension to a high degree of accuracy (MSRE = 0.05).
. Introduction

Electrodialysis (ED) is an electro-membrane process for separa-
ion of ions across charged membranes from one solution to another
ith the aid of an electrical potential difference used as a driving

orce. This process has been widely used for production of drinking
nd process water from brackish water and sea water, treatment of
ndustrial effluents, recovery of useful materials from effluents and
alt production. The basic principles and applications of ED were
eviewed in the literature [1–6].

In order to improve the performance of ED process, optimiza-
ion (operating and design) and analysis of the process should be
ccomplished. Modeling and simulation are tools to achieve these
bjectives. However, modeling of a process covers a broad spec-
rum. At one extreme lie theoretical (or parametric) models based
n fundamental knowledge of the process. These models are also
alled knowledge-based models. At the other end lie empirical (or
on-parametric) models which do not rely on the fundamental
rinciples which governing the process [7–9].
A large majority of modeling works on ED process are the-
retical which are developed using Nernst–Planck equation for
iffusions, convection and migration of charged species in electric
eld and a material balance equation such as Maxwell–Stefan equa-
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tion [10–28]. The Maxwell–Stefan equation represents the simplest
mathematical tool for linking the flux of a generic species through
the membrane with its interfacial concentrations at the membrane
left- and right-sides, as well as with the external electrical voltage
applied to the ED electrodes [29]. To overcome the main problem
in application of the Maxwell–Stefan mass transfer model to ED
process, i.e. the large number of species diffusivities in the bulk
solution and the membrane phase [30], the Nernst–Planck rela-
tionship is largely used to describe diffusion and electro-migration
contributions to ion transport in ion exchange membranes.

Most of these models are obviously derived from physical
descriptions and understanding of the ED process under the
assumption of Donnan equilibrium. Basic electrochemistry rules
such as Kohlrausch law, Nernst–Einstein equation, Einstein equa-
tion, and Debye–Huckel–Onsager theory are also used everywhere
needed [20,24].

Most theoretical models can be used for different scale of ED
cells and ions. These types of models are very useful for scale-up
applications. However, as mentioned above, they are mathemati-
cally complex, computationally expensive and they ideally require
a very detailed knowledge of the ED process as well as charac-
terization of the membranes. Therefore, there is a need to find an

alternative means for predicting process performance by exploit-
ing available process data and extending them to unavailable data.
Fuzzy logic (FL) inference systems and artificial neural networks
are capable of modeling highly complex and non-linear processes
such as ED. The main limitation of these types of modeling is that,

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:torajmohammadi@iust.ac.ir
dx.doi.org/10.1016/j.cej.2009.03.003
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Fig. 1. ANFIS architectur

hey only can be utilized for a specific experiment. In spite of their
utstanding ability in predicting the behavior of processes, they are
ot as flexible as theoretical models to be employed for scale-up.

Artificial neural network has been used in a wide range of
embrane process applications (reverse osmosis, nanofiltration,

ltrafiltration, microfiltration, membrane filtration, gas separation,
embrane bioreactor and fuel cell) [31]. Recently, ED process was
odeled using a multilayer perceptron neural network with two

idden layers [31]. Fuzzy control system was limitedly applied in
embrane processes [32–36]. However, there are a few records in

he literature which applied FL for prediction of membrane pro-
esses behaviors [37–39].

In this study, a FL inference system was initially used to model an
D process. The FL model was successful to predict separation per-
ent (SP) of zinc ions in the limit of experimented levels of operating
arameters using a laboratory scale ED cell, excellently. Then, the
esults of a previously developed mathematical model (MM) were
resented [20,24]. The main advantage of MM was to relate SP to
ydrodynamic dimension of the ED cell and operation conditions
ia two distinct parameters. However, the MM could not predict the
xperimental data as well as FL. Finally, the MM was coupled with
L to overcome the above mentioned shortcomings of both models.
he developed coupled model (MM–FL) was realized to be able to
redict SP of zinc ions at all operating conditions and almost every
imension to a high degree of accuracy.

. FL theory

FL was developed by Zadeh in 1965. Basically, FL is a multivalued
ogic that allows intermediate values to be defined between con-
entional evaluations like true/false, yes/no, high/low, etc. Notions
ike rather tall or very fast can be formulated mathematically and
rocessed by computers, in order to apply a more human-like way
f thinking in the programming of computers.

The use of fuzzy set theory allows the user to include the
navoidable imprecision in the data. Fuzzy inference is the actual
rocess of mapping from a given set of input variables to an out-
ut based on a set of fuzzy rules. The essence of the modeling is to

dentify fuzzy rules. Four fundamental units are necessary for the
uccessful application of any fuzzy modeling approach. These are,
amely, the fuzzification unit, the knowledge base (which is com-
osed of the database and the rule base), the inference engine unit

nd the defuzzification unit.

In the fuzzification unit, the input and output variables are
uzzified by considering convenient linguistic subsets such as high,

edium, low, heavy, light, hot, warm, big, small, etc. Partition of
ariable into groups is not a very easy task. Various methods have
e input–output system.

been developed in the literature, such as the neural network-based
method [40], the inductive learning [41], the genetic algorithm [42],
the fuzzy clustering [43] and uses of statistics [44].

In knowledge base unit, fuzzy IF–THEN rules are constructed
based on the expert knowledge and/or on the basis of available data.
The rules provide a transition between input and output fuzzy sets.
Premise part input fuzzy membership functions (MFs) are com-
bined interchangeably with a logical “and” or “or” a conjunction
whereas the rules are combined with the logical “or” the conjunc-
tion.

In the inference engine unit, the implication part of a fuzzy sys-
tem is defined as the forming of the consequent MFs based on the
membership degrees of the premise (antecedent) part.

In the defuzzification unit, the result appears as a fuzzy set is
defuzzified to calculate a crisp value, which is asked for engineering
applications.

In the applications of the fuzzy system in control and forecasting,
there are mainly two approaches, namely, Mamdani and Sugeno
methods [45]. For the first approach, there are clear procedures i.e.
fuzzification, inference and defuzzificiation procedures. The main
difference between Mamdani and Sugeno approaches is originated
from defuzzification procedure. In the Mamdani approach, each
IF–THEN rule produces a fuzzy set for the output variable, and hence
the step of defuzzification is indispensable so as to obtain crisp val-
ues of the output variable. However, in Sugeno method, outcome of
each IF–THEN inference rule is a scalar rather than a fuzzy set for
the output variable. Defuzzification procedure is completed sim-
ply in Sugeno method by taking the weighted average of the rule
outcome.

The main problem with the Sugeno FL modeling is related to
the choice of the modeling parameters. For this reason, the adap-
tive network-based fuzzy inference system (ANFIS) methodology
is applied to estimate the parameters of the membership and the
consequent functions [46]. ANFIS is a certain type of the FL mod-
els. In this approach, outputs of the knowledge base unit are crisp
values and do not need defuzzification. The general scheme of the
ANFIS is shown in Fig. 1. Fig. 2 depicts the two-dimensional input
space where X1 and X2 are partitioned into four symmetric trian-
gular fuzzy sets. The Sugeno approach has fuzzy sets in the premise
part only and IF–THEN control rules are given as follows:

Rr : IF X1 is S
(1)
r , X2 is S

(2)
r , . . . , Xp is S

(n)
r

THEN Yr = fr(X1, X2, . . . , Xn)
(1)
where S(i)
r is a fuzzy set corresponding to a partitioned domain of

the input variable Xj in the rth IF–THEN rule, n is the number of
input variables, fr is a function of the n input variables, and finally
Yr is the output of the rth IF–THEN inference rule Rr.
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Fig. 2. Fuzzy partition in the two-dimensional space.

The general algorithm of the Sugeno inference system is
xpressed as follows [45]. It is assumed that there are Rr

r = 1, 2, 3, . . ., k) rules in the above mentioned form.

1. For each implication Ri, Yi is calculated by the function fi in the
consequence part:

Yi = fi(X1, X2, . . . , Xn) = cr(0) + cr(1)X1 + cr(2)X2 + · · · + cr(n)Xn

(2)

. The weights are calculated as follows:

rr = (mr1 ∧mr2 ∧ · · · ∧mrn)Pr (3)

where mr1,m
r
2, . . . ,m

r
k

denote the ˛ cuts of MFs according to
input values for the rth rule. An ˛ cut of a fuzzy set A (A˛) is
a crisp set, which contains all the elements in U that have mem-
bership values greater than or equal to ˛ (x ∈ U | MF ≥˛) in A. The
universe of discourse U is the n-dimensional Euclidean space Rn.
The occurrence probability is shown by Pr and ∧ stands for min
or production operation. For the sake of simplicity Pr is taken as
equal to 1.The final output Y inferred from k implications is given

as the weighted average of all Yr with the weights rr as

Y =
∑n

r=1rrYr∑n
r=1rr

(4)

able 1
lectrochemistry rules to find the functionality of electrolyte resistance (R).

1) Electrolyte resistance R = h
�A

3) Molar conductivity �M =�◦
M

− KC0.5

5) Ion molar conductivity �± = z±FD±
�T

7) Ion mobilityb �± = z±e
6	
a±

9) Debye–Huckel–Onsager coefficient � = z2eF2

3	


(
2
ε�T

)0.5

11) Electric permittivityc ε = εrε0

13) Constantd q = 2ωz+z−(�++�−)
(z++z−)(z+�−+z−�+)

a Molar conductivity in the limit of zero concentration of an electrolyte. �+ and �− are
bSO4). z+ and z− are cation and anion valances. For n–n electrolytes such as PbSO4 z+ = z−
b a in this equation is the ion diameter.
c ε0 is the vacuum permittivity (8.854 × 10−12 C2 J−1m−1).
d For 1–1, 2–2 and n–n electrolytes ω = 0.5.
e q = 0.586 and 2.343 for 1–1 electrolyte and 2–2 electrolyte, respectively.
Fig. 3. Differential element of the dilute compartment.

3. Mathematical modeling

A differential element of the dilute compartment is illustrated in
Fig. 3. The steady state mass balance of lead ions in the compartment
is as follows:

uhwCx − uhwCx+dx = JMw dx (5)

Also, the molar flux through the dilute compartment in term of
current density is as follows:

JM = � i
F

= �

F

dI

dAm
(6)

where Am = lw, l, h and w are the channel dimensions, � is the
current efficiency, F is the Faraday constant and i is the current
density. Assuming constant concentration in the cell compartment
(dI/dAm = I/Am), the following differential equation is obtained [47]:

uhdC = − I

Am

�

F
dx (7)

In order to be able to use integrate form of this equation with oper-
ational variables, � needs to be verified. At any point, molar flux can
be written as follows:
JM = k(Cbulk − Ci) = k �C (8)

where Cbulk and Ci are concentrations at the bulk of dilute stream
and at the membrane surface, respectively. Due to very small dis-
tance between two membranes,�C can be assumed to be constant

(2) Electrolyte conductivity � =�MC
(4) Limiting molar conductivitya �

◦
M

= �+�+ + �−�−
(6) Diffusion coefficient D± = �±�T

z±F
(8) Kohlrausch coefficient K = � + �◦

m

(10) Debye–Huckel–Onsager coefficient  = qz3eF2

24	ε�T
(

2
ε�T

)0.5

(12) Relative permittivity εr = 185.765 − 0.35963T
(14) Constante ω = z+z−(�++�−)

(z++z−)(z+�++z−�−)

the numbers of cations and anions per an electrolyte molecule (e.g. �+ = �− = 1 for
= z.
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Fig. 4. Laboratory sca

long the membrane surface [47]. Hence, Eqs. (6) and (8) can be
ombined as follows:

= �CFAm
I

k = � ′k (9)

ccording to the literature, k is calculated as follows [48]:

= 3.30D2/3
(
Qd
hAdl

)1/3

(10)

n ED, the basic relations between current (I), effective electrical
otive force (E) and system resistance (R) can be described by
hm’s law:

= E

NR
(11)

here N is the number of cells which is 1 in this study. Neglecting
embranes resistances, solution resistance can be expressed as a

unction of concentration and temperature (f(c, T)) [3,20,49]. Table 1
hows how electrochemistry rules were applied sequentially to find
his functionality [20]. Using equations in this table, the following
quation can be derived:

= h

CA(x′ − y′C0.5 − x′z′C0.5)
(12)

here

′ = eFz2

6	


(
1
a+

+ 1
a−

)
, y′ = 3.30


(εrT)0.5
and z′ = 3281587

(εrT)1.5
.

Combination of Eqs. (7)–(12) and integrating both sides using
he following boundary condition result in an expression for the

odel parameter (�):

t x = 0 C = C0

= − Q
2/3
d

ET2/3

h5/3

2/3

(
6	a
e�

)2/3
(F 
)5/3

∫ C

f (C, T)dC (13)

(lw) C0

sing a simple change of variable, Eq. (13) can be written as a func-
ion of SP.

= ϕ × ˇ (14)
te and frame ED cell.

where

ϕ = −Q
2/3
d

5/3

C0ET2/3
Ln

[
(ı+ �)

√
1 − SP

ı+ �√
1 − SP

]
(15)

and

ˇ = 75
h5/3

(lw)2/3

(
6	a
e�

)2/3
F5/3 (16)

MM is related to operating conditions and ED cell dimension by
ϕ and ˇ parameters, respectively. In Eq. (15), � = −

√
C0/T(0.38 +

125/T) and ı= 0.026. SP is also defined as

SP = C0 − C
C0

× 100 (17)

where C0 and C are the feed and dilute concentrations, respectively.
The following equation was fitted for ϕ as a function of operating
parameters using experimental data:

ϕ = 1

(−1.5 × 106/E + 1.15 × 107C155/T
0 /E0.001 + 3 × 1017Q2.5

d
)

(18)

With the aid of Eqs. (14)–(18) and using MATLAB programming soft-
ware, the model gives SP for various operating conditions as well as
different ED cell dimensions. Detailed description of the developed
model was presented elsewhere [20,24].

4. Materials and methods

4.1. Materials

An analytical grade salt (99.9% zinc sulfate supplied by Merck)
and deionized water were used in all experiments to produce solu-
tions with wastewater qualities. The purpose of these experiments
was to study the effect of temperature, voltage, flow rate and feed
concentration on the ED cell performance.
4.2. Cell and membranes

A plate and frame ED cell made from Plexiglass (polymethyl
methacrylate) was used to conduct the experiments (Fig. 4). The
ED cell consisted of three detachable parts and packed with a pair
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Table 2
Physical and chemical characteristics of the employed membranes.

Property Membrane

AR204SXR412 CR67, MK111

Reinforcing fabric Acrylic Acrylic
Specific weight (mg/cm2) 13.7 13.7
Thickness (mm) 0.5 0.56–0.58

2

Fig. 5. Schematic view of ED cell.

f cation and anion exchange membranes (CEM and AEM) and a pair
f platinum electrodes (anode and cathode). The overall dimensions
f length, height and width of the cell were 0.13, 0.06 and 0.09 m,
espectively. The membranes had effective area of 0.060 × 0.065 m2.
ubber O-rings were used to provide a pressure-tight seal between
he membrane and the module. Both electrodes were made of pure
latinum. The surface area of each electrode was 0.042 × 0.042 m2.
he thickness of dilution cell (center) and each concentrate cell
left and right) were 0.004 and 0.003 m, respectively. Hence, vol-
mes of dilute and concentrate compartments were approximately
5.6 × 10−6 and 11.7 × 10−6 m3.

Schematic view of the applied ED cell is presented in Fig. 4. Zinc
ulfate solution is introduced into the three compartments. CEM
llows only cations to permeate, and AEM allows only anions to per-
eate. These exchange membranes are immersed in wastewater in

arallel, as shown in Fig. 5, and an electric current is passed through
he solution. The cations migrate to the cathode, and the anions

igrate to the anode. Therefore, the solution passing between the
embranes is divided into two streams. One is pure water (dilute),

nd the other is concentrated solution of ions (concentrate). Since
D uses energy at a rate directly proportional to the quantity of ions
o be removed, this process is more useful in deionizing wastewater.
Electrical potential is the driving force for transport of ions in
D. This potential is applied from an external power supply through
lectrodes situated on either end of the ED cell. Current flow in the
ircuit external to the stack is electronic, i.e., electrons flow through
etallic conductors. However, current flow within the stack is elec-

Fig. 6. Schematic vie
Burst strength (kg/cm ) 7.0 7.0
Water content 46% of wet resin only 46% of wet resin only
IEC (meq/dry gram membrane) 2.8 2.4
Chemical stability, pH 1–10 1–10

trolytic, i.e., ions flow through solutions. The transfer of electrical
charge from electronic to electrolytic conduction is accomplished
via electrode reactions [50]:

Anode reaction

H2O → 1/2 O2(g) + 2H+ + 2e−

Cathode reaction

2H2O + 2e− → H2(g) + 2OH−

O2 and H2 gas bubbles produced by the anode and cathode reac-
tions can blanket the electrodes and increase the resistance of the
ED cell [51]. Hence concentrate streams were disposed off to pre-
vent accumulation of these gases. High values of pH at cathode can
cause precipitation of any pH sensitive materials (Zn2+ in this study
reacts with hydroxide ions and produces Zn(OH)2 precipitate) on
CEM, which can raise resistance and even make the ED cell inoper-
ative [51]. At lower flow rates, precipitation is more important. The
precipitate was removed by cleaning in place (CIP) using distilled
water after each run [5].

AR204SXR412 and CR67, MK111 anion and cation exchange
membranes (supplied by Arak petrochemical complex and made
by Ionics incorporated) were used in all the experiments. Physical
and chemical properties of the applied membranes are presented
in Table 2.
4.3. ED setup

ED setup consisted of a feed tank (TK-01) for storing wastew-
ater, two pumps (P-01 and P-02, RESUN submersible pump,

w of ED setup.
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= 4 W, total head = 0.5 m), a rectifier (DC-01, RST Spastell TRFO)
nd two globe valves (GB-01 and GB-02, CHUYU model J11W-
00LB) to control the flow rate of feed solution passing through
he three compartments of the self-designed ED cell. A sim-
lified diagram of the setup is shown in Fig. 6. As can be
bserved, the feed solution was passed through the dilute and
oncentrate compartments, based on once through operation.
o cyclic regime was used. Concentrated streams were dis-
osed of and diluted stream was collected for conductometric
nalysis.

.4. Experimental design

Experiments were conducted under the limiting current den-
ity. Effects of feed concentration (100–1000 ppm), flow rate
0.07 × 10−6–1.2 × 10−6 m3/s), temperature (298.15–333.15 K) and
oltage (10–30 V) on the performance of ED cell are investigated.

Each experiment lasted for about 15 min to reach steady state
ondition. After that three samples were taken every 5 min and the
verage value was reported. Each experiment was repeated three
imes and the results were presented in average with the maximum
eviation of 5%.

It should be noted that there were some factors in the present
ork which were either uncontrollable or were too expensive to

ontrol, such as pH variation, variation of environmental operat-
ng conditions, occurring electrolysis on both electrodes, variation
f voltage, concentration polarization, etc. These factors are called
oise factors. Noise factors may have a negative impact on system
erformance or may not.

According to the literature, pH effect on the performance of an
D cell is negligible, especially at voltages greater than 10 V [49,52].

eviation of pH was much more observed in the concentrate com-
artment (adjacent to electrodes). Since the concentrate stream
as disposed of (Fig. 6), it did not affect the dilute stream charac-

eristics. Hence, the variation of pH through the separation process
as not monitored.

able 3
xperimental data used for training and testing the fuzzy model.

perating parameters SP (%) Operating parameters

(◦C) C (ppm) V (V) I (mA) Q (mL/s) T (◦C) C (ppm) V (V) I (m

98.15 100 10 0.12 0.07 27.53 313.15 100 10 0.1
98.15 100 20 0.22 0.07 47.58 313.15 100 20 0.2
98.15 100 30 0.32 0.07 54.08 313.15 100 30 0.3
98.15 100 10 0.14 0.70 0.262 313.15 100 10 0.2
98.15 100 20 0.28 0.70 1.012 313.15 100 20 0.3
98.15 100 30 0.43 0.70 1.393 313.15 100 30 0.5
98.15 100 10 0.14 1.20 0.252 313.15 100 10 0.2
98.15 100 20 0.28 1.20 0.757 313.15 100 20 0.3
98.15 100 30 0.43 1.20 0.951 313.15 100 30 0.5
98.15 500 10 0.49 0.07 45.97 313.15 500 10 0.6
98.15 500 20 0.88 0.07 66.02 313.15 500 20 1.0
98.15 500 30 1.26 0.07 72.52 313.15 500 30 1.4
98.15 500 10 0.62 0.70 1.028 313.15 500 10 0.8
98.15 500 20 1.18 0.70 12.02 313.15 500 20 1.4
98.15 500 30 1.72 0.70 18.52 313.15 500 30 2.1
98.15 500 10 0.62 1.20 0.766 313.15 500 10 0.8
98.15 500 20 1.21 1.20 7.730 313.15 500 20 1.5
98.15 500 30 1.76 1.20 14.23 313.15 500 30 2.1
98.15 1000 10 0.90 0.07 44.44 313.15 1000 10 1.1
98.15 1000 20 1.61 0.07 64.49 313.15 1000 20 1.9
98.15 1000 30 2.32 0.07 70.99 313.15 1000 30 2.7
98.15 1000 10 1.09 0.70 1.457 313.15 1000 10 1.4
98.15 1000 20 2.11 0.70 10.49 313.15 1000 20 2.6
98.15 1000 30 3.09 0.70 16.99 313.15 1000 30 3.8
98.15 1000 10 1.09 1.20 0.981 313.15 1000 10 1.4
98.15 1000 20 2.15 1.20 6.200 313.15 1000 20 2.7
98.15 1000 30 3.14 1.20 12.70 313.15 1000 30 3.9
Fig. 7. Calibration curve of the conductometer.

4.5. Analytical method

In all the experiments, a conductometer (HANNA, model HI
8633) was used to measure the amount of ions in the dilute aque-
ous solution. The conductometer was initially calibrated using zinc
sulfate solutions of definite concentrations. Calibration curve of the
conductometer is shown in Fig. 7. Then, zinc sulfate concentration
in the dilute compartment was measured. Finally, SP was calculated
using Eq. (17).

5. Results and discussion

5.1. FL model
A sophisticated intelligent model, based on the Sugeno fuzzy
modeling principles, was used to predict the SP of an ED cell. Data
spaces were partitioned into fuzzy sets by means of the grid parti-

SP (%) Operating parameters SP (%)

A) Q (mL/s) T (◦C) C (ppm) V (V) I (mA) Q (mL/s)

5 0.07 47.66 333.15 100 10 0.20 0.07 53.74
7 0.07 67.71 333.15 100 20 0.36 0.07 73.79
8 0.07 74.21 333.15 100 30 0.51 0.07 80.29
0 0.70 0.884 333.15 100 10 0.27 0.70 2.567
7 0.70 13.71 333.15 100 20 0.50 0.70 19.79
4 0.70 20.21 333.15 100 30 0.72 0.70 26.29
0 1.20 0.683 333.15 100 10 0.27 1.20 1.387
8 1.20 9.420 333.15 100 20 0.51 1.20 15.50
5 1.20 15.92 333.15 100 30 0.74 1.20 22.08
0 0.07 66.10 333.15 500 10 0.80 0.07 72.18
4 0.07 86.15 333.15 500 20 1.37 0.07 92.23
8 0.07 92.65 333.15 500 30 1.95 0.07 98.73
1 0.70 12.10 333.15 500 10 1.09 0.70 18.18
7 0.70 32.15 333.15 500 20 1.97 0.70 38.23
3 0.70 38.65 333.15 500 30 2.85 0.70 44.73
3 1.20 7.810 333.15 500 10 1.11 1.20 13.89
0 1.20 27.86 333.15 500 20 2.01 1.20 33.94
8 1.20 34.36 333.15 500 30 2.92 1.20 40.44
0 0.07 64.57 333.15 1000 10 1.46 0.07 70.65
3 0.07 84.62 333.15 1000 20 2.55 0.07 90.70
5 0.07 91.12 333.15 1000 30 3.63 0.07 97.2
4 0.70 10.57 333.15 1000 10 1.94 0.70 16.65
4 0.70 30.62 333.15 1000 20 3.54 0.70 36.70
4 0.70 37.12 333.15 1000 30 5.14 0.70 43.21
7 1.20 6.280 333.15 1000 10 1.97 1.20 12.36
0 1.20 26.33 333.15 1000 20 3.61 1.20 32.41
2 1.20 32.83 333.15 1000 30 5.21 1.20 40.44
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Table 4
Statistical criteria for evaluation of the fuzzy model.

Criterion Training data Testing data Total fuzzy model

MSE 0.1799 0.8503 0.2712
RMSE 0.4242 0.9221 0.5208

• Temperature (T): 25, 40 and 60 ◦C
• Concentration (C): 100, 500 and 1000 ppm
• Flow rate (Q): 0.07, 0.7 and 1.2 mL/s
• Voltage (V): 10, 20 and 30 V
Fig. 8. Gaussian membership function.

ioning method. Training and testing was accomplished with the
id of MATLAB software (version 7.1). ANFIS methodology whit
ybrid learning method was applied to estimate the parameters of
he applied two-parametric Gaussian membership function (Fig. 8)
nd the consequent functions. The symmetric Gaussian function
epends on two parameters, c and �, as given by

A(x) = e
−(x−c)2

2�2 (19)

here c and � are the centre and width of the fuzzy set A, respec-
ively.

.1.1. Input variables selection
Many parameters affect performance of the ED cell:

ion content of the raw water
applied electrical potential (current density)
residence time of solution in the cell compartments (flow rate)

geometry of cell compartments
operating temperature
membrane properties
feed concentration [6]

ig. 9. The ANFIS model structure used in training and testing: 4 input variables, 2
aussian membership functions for each variable and 16 rules.
R 0.9999 0.9999 0.9998
R2 0.9998 0.9999 0.9997
MSRE 0.0084 0.0011 0.0074

A technique for laying out the experiments when multiple factors
are involved is the factorial design of experiments. This method
helps researchers to determine the possible combinations of factors
and to identify the best combination. Since it is extremely costly to
run a number of experiments to test all combinations, application
of the full factorial design of experiments is restricted when many
factors and levels are studied.

Hence, according to our previous studies [4–6,47,48], four fac-
tors, from the above mentioned parameters, were selected. It is
believed that they have the greatest effect on the SP: feed concen-
tration, dilute solution flow rate, voltage and feed inlet temperature.

5.1.2. Training and testing the ANFIS
81 experiments were conducted based on the full factorial

design. The results are presented in Table 3. As observed the four
factors each at three levels were investigated:
Fig. 10. Performance of FL model in predicting SP: (a) training data, (b) testing data.
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ig. 11. Generalization performances of FL-based model, effects of (a) concentrati
0 ◦C, (c) flow rate and temperature at 500 ppm and 20 V, (d) voltage and flow rate a
emperature at 500 ppm and 0.7 mL/s on SP.

5 extra experiments were carried out at the central points of
ach factor, i.e. T = 35 and 50 ◦C, C = 250 and 750 ppm, Q = 0.03 and
.9 mL/s and V = 15 and 25 V.

Hence, data matrix of the ANFIS model structure includes 116
ows and 5 column [116 × 5]. The first four columns of this matrix
re operating conditions and the last one is the ED process response
SP). With the aid of MATLAB programming software 101 data was
andomly picked up in each run for training and the rest was used
or testing. The procedure was repeated until randomly chosen
raining data led to MSRE of less than 0.01 for training and testing
ata.

Standard artificial intelligence tools such as neural network and
L need three subsets of data: training, validating and testing. How-
ver, validating subset is used only for noisy systems. In most of
ontrol systems where dynamic problems are dealt, validating sub-
et is also applied. In the present work, SP of an ED cell was acquired
t steady state condition. Hence, the necessity of utilizing validating
ata set was not met.

When normal values of input variables (as mentioned above)
ere used, prediction of SP values lower than 10 was impossible.

herefore, a new set of non-dimensional parameters was defined

hrough dividing each input variable by its highest value (e.g. 10/30,
0/30 and 30/30 for voltage).

The ANFIS model structure applied for training and testing of the
odel is illustrated in Fig. 9. As can be seen, it includes 4 input vari-

bles, 2 Gaussian membership functions for each variable and 16
temperature at 0.7 mL/s and 20 V, (b) voltage and concentration at 0.7 mL/s and
pm and 40 ◦C, (e) flow rate and concentration at 20 V and 40 ◦C, and (f) voltage and

(24) rules. It should be noted that, when two membership functions
are considered for four variable, 16 unique rules will be obtained
using every tool. In this study, 80 linear parameters and 16 non-
linear parameters were obtained by the ANFIS approach. Tm, Cm,
Vm and Qm in Fig. 9 are non-dimensional parameters.

5.1.3. FL model performance
Different groups of training data were examined and with

respect to the mean squared error (MSE) of testing data, the proper
model was developed. MSE is calculated as follows:

MSE =
∑

N(SPcal − SPexp)2

N
(20)

where subscripts cal and exp denote calculated and experimental
values of SP, respectively. N is the number of testing and training
data.

The most widely used criteria including MSE, root mean square
error (RMSE), correlation coefficient (R), coefficient of determina-
tion (R2) and MSRE for training and testing data sets are presented
in Table 4. RMSE is the square root of MSE presented in Eq. (20).

In probability theory and statistics, R indicates the strength and
direction of a linear relationship between two variables. In general
statistical usage, R refers to the departure of two variables from
independence. A number of different coefficients are used for dif-
ferent situations. The best known is the Pearson product-moment
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Fig. 12. MM prediction values compared with experimental data, effect of (a) voltage on SP at different flow rates, (b) temperature on SP at different feed concentrations,
both plotted at optimum levels of two other factors, i.e. C = 1000 ppm, T = 60 ◦C, Q = 0.07 mL/s and V = 30 V.

Fig. 13. MM error as a function of operating parameters.
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Table 5
Comparing of the performance of MM and ANN model.

Criterion MM FL MM–FL Coupled Model

MSE 38.605 0.2712 0.7101
RMSE 6.213 0.5208 0.8501

ations are observed in some cases), they properly describe the
trend of the behavior. Obviously, it can be said that MM is of great
importance because (1) it satisfies experimental data to a moder-
ately sufficient degree of correlation coefficient (0.97); (2) it can
M. Sadrzadeh et al. / Chemical En

orrelation coefficient as follows:

=
∑

N(SPcal − SPcal,ave)(SPexp − SPexp,ave)√∑
N(SPcal − SPcal,ave) ×

√∑
N(SPexp − SPexp,ave)

(21)

2 can have only positive values ranging from R2 = +1.0 for a perfect
orrelation (positive or negative) down to R2 = 0.0 for a complete
bsence of correlation. The advantage of R is that it provides the
ositive or negative direction of the correlation. The advantage of
2 is that it provides a measure of the strength of the correlation. It
an be said that R2 represents the proportion of the data that is the
losest to the line of best fit.

Another measure of fit is MSRE which is calculated by the fol-
owing equation:

SRE = 1
N

∑
N

(
SPcal − SPexp

SPexp

)2

(22)

n Fig. 10, the experimental results (training and testing data) versus
uzzy model predictions are plotted. According to this figure and
ata presented in Table 4, excellent fitness of fuzzy predicted values
ith experimental data is realized.

.1.4. Generalization of the FL-based model
After developing an efficient FL-based model, it can be used

or prediction of SP for different inputs in the domain of training
ata. In Fig. 11, predicted values of SP are plotted versus operating
arameters in 3D plots. As can be observed, increasing temperature
Fig. 11a,c,f), concentration (Fig. 11a,b,e) and voltage (Fig. 11b,d,f)
ncreases SP values. It is obviously due to the fact that increas-
ng temperature and concentration decreases electrical resistance
f the solution, while increasing voltage increases driving force of
he process. At higher flow rates, SP values decreases because the

ore flow rate means the less residence time, and thus, ions that
re between the membranes do not have enough time to transfer
hrough them (Fig. 11c,d,e) [5,6,20,53,54].

Taking a closer look to Fig. 11, it is found that the differences
etween SP values regarding medium and high levels of parameters
re negligible comparing to those regarding low and medium levels,
.e., at higher values of parameters, almost constant values of SP are
chieved.

When voltage, concentration and temperature increase, con-
entration polarization phenomenon becomes more important.
ntensified concentration polarization adjacent to the ion exchange

embranes, reduces SP in an obvious manner. On the other hand,
apability of ion exchange membranes with certain surface area is
lso limited. This capability is characterized by ion exchange capac-
ty (IEC) of the membranes presented in Table 2. It means that
he mechanism of ion transport through the membranes may not
llow zinc ions to transfer, even if operating condition becomes
ore favorable. Higher amounts of feed flow rate than 0.7 mL/s

ave almost no effect on separation performance. It means that, at
igher flow rate than 0.7 mL/s, residence time of ions in dilute com-
artment reaches to its minimum value and consequently electrical
otential is not induced on ions. Hence, SP approaches to a constant
inimum value at higher flow rates.
The corresponding generalization performances of the devel-

ped model, as indicated in Fig. 11, show no oscillations, and
his confirms an excellent prediction performance of the FL-based

odel.
.2. MM performance

In order to assess the reliability of MM, the calculated results
ere compared with the measured experimental data. MM pre-
iction values and experimental data are depicted in Fig. 12. As
R 0.975 0.9998 0.9991
R2 0.950 0.9997 0.9982
MSRE 23.949 0.0074 0.0470

can be seen in Fig. 12a, MM predicts reasonable results at low and
medium voltages (10 < V < 20 V) and all flow rates with coefficient
of determination, R2, of higher than 0.975.

According to Fig. 12b, it is found that there is an accept-
able agreement (R2 > 0.970) between the calculated results and
experimental data at lower temperatures and concentrations
(100 < C < 500 ppm and 25 < T < 40 ◦C). However, the range of one
parameter at which MM gives reasonable responses is significantly
dependent on adjustments of other parameters. For example, at
higher flow rates, MM error is minimized at lower voltages while
at lower flow rates this result is inverted. Altogether, when non-
linearity of ED process increases, MM error increases obviously.
It seems that at higher values of voltage, concentration and tem-
perature, predicting the behavior of ED process becomes more
difficult (Fig. 11). It is due to the intensification of concentration
polarization at higher values of theses parameters, as discussed
before.

It should be noted that, although experimental values and MM
curves do not completely coincide with each other (significant devi-
Fig. 14. Performance of FL in predicting the MM error: (a) training data, (b) testing
data.
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e used for different scale of ED cells and ions; (3) it can be eas-
ly used to calculate SP at different operational conditions and (4)
t can be used for scale-up. However, coupling MM and FL mod-
ls, results in more accurate SP values along with other benefits
f MM.

.3. Coupled MM–FL performance

MM error was calculated at all operating conditions. Average
bsolute error of MM for 81 experiments was evaluated to be 7.5%.
D plots of MM errors at various operating conditions are shown in
ig. 13. The MM resulted in minimum errors at lower values of feed
emperatures, concentrations and cell voltages and medium values
f flow rates. As mentioned earlier, at higher values of operating
arameters, ED process exhibits more non-linear behavior which
onsequently increases MM errors. As can be seen in Fig. 13, the MM
rror was not an intricate function of operating parameters. Hence,
he FL model was applied to predict the MM errors. Performance
f the FL model in predicting the MM errors is presented in Fig. 14.
s observed, there is a superb agreement between the estimated
esults obtained by the FL model and the experimental data.

The procedure of coupling MM and FL model is well described
y a flow chart presented in Fig. 15. At first, SP of zinc ions at vari-
us operating conditions and ED cell dimensions is estimated using
he MM. Then, the predicted value of MM error by the FL model
s added to it to acquire a more accurate response. The FL, MM
nd coupled MM–FL modeling predictions and the experimental
ata are juxtaposed in Fig. 16. As can be seen, the FL and coupled
M–FL models can predict SP of the ED cell at various operat-

ng conditions much better than the MM. Better performance of

he FL and coupled MM–FL models is also confirmed by com-
aring MSE, RMSE, R, R2 and MSRE values of the three models

n Table 5. As discussed earlier, the MM can be used for differ-
nt sizes of ED cells and ions which rationalize its application
espite much lower accuracy compared with the FL. The developed

ig. 16. Comparing MM, FL, MM–FL and experimental data; effect of (a) temperature, (b)
.e. C = 500 ppm, T = 40 ◦C, Q = 0.7 mL/s and V = 20 V.
Fig. 15. Flow chart of coupling MM and FL model.

coupled MM–FL model gives SP of zinc ions at various operating
conditions as well as different ED cell dimensions with reasonable
accuracy.

Excellent agreement between the FL model results and the
experimental data indicates the capability of FL to model the com-
plicated ion transfer mechanism in an electrical field. However, the
lines of intense curvature in the FL model, which are caused by over-
training, make sensibility of the FL model for interpolation of new
patterns uncertain. Fig. 16 confirms that the MM tends to describe

the non-linear behavior of the ED process in almost a linear man-
ner. Hence, the lines of mild curvature obtained by the coupled
MM–FL model give more reliable results than the FL model and the
MM.

concentration, (c) voltage and (d) flow rate on SP at medium levels of other factors,
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. Conclusion

In this paper, a Sugeno type fuzzy model was initially developed
o predict SP of zinc ions in the dilute compartment of a laboratory
cale ED cell. Data spaces were partitioned into fuzzy sets by means
f the grid partitioning method. ANFIS methodology was applied
o estimate the parameters of the applied two-parametric Gaus-
ian membership function. Then, a previously developed MM was
resented. The MM derived from a differential equation of steady
tate mass balance. Neglecting resistances of ion exchange mem-
ranes compared with resistances of bulk solutions in the dilute and
he concentrate compartments and deriving a relation for solution
esistance as a function of operating parameters, the final one-
arameter model was obtained. The MM could be easily used to
alculate SP at different operational conditions, ED cell dimensions
nd ions. However, it could not satisfy the experimental data as well
s the FL model. MSE values of FL and MM were 0.27 and 38.60,
espectively. Hence, MM and FL were coupled with each other to
ring worthwhile privileges of the two models together. The devel-
ped coupled model successfully tracked the non-linear behavior
f SP versus temperature, voltage, concentration and flow rate with
SE, R and MSRE of 0.710, 0.998 and 0.047, respectively. For almost

ll the experiments, the developed coupled model (MM–FL) was
onfirmed to be an adequate interpolation tool for excellent pre-
iction. The MM–FL model integrated many favorable features of
heoretical and empirical models such as efficiency, generalization,
implicity and scale-up, and as a result, it can be recommended
s an attractive choice for modeling of complex systems, such as
astewater treatment processes.

. Notation

hydrodynamic radius of ion (m)
effective area (m2), fuzzy set
centre of the fuzzy set, constant in FL output function
concentration (kmol m−3)
diffusivity (m2 s−1)
electronic charge (C)
electrical potential (V)
function
Faraday constant (C kmol−1)

L fuzzy logic
thickness of dilute compartment (m)
current density (A m−2)
current intensity (A)
molar flux (kmol m−2 s−1)
mass transfer constant (m s−1)
Kohlrausch coefficient (S m2 kmol−1 M−0.5)
flow length in channel (m)
a cut of MF

F membership function
M mathematical model
SE mean squared error
SRE mean squared relative error

number of input variables
number of cell pairs, number of testing and training data
in FL

r occurrence probability in FL
constant
flow rate (m3 s−1)

number of IF–THEN rules
resistance (�), correlation coefficient, IF–THEN inference
rule in FL
universal gas constant (J kmol−1 K−1)

2 coefficient of determination
ing Journal 151 (2009) 262–274 273

RMSE root mean square error
SP separation percent (%)
T temperature (K)
u flow velocity (m s−1)
U n-dimensional Euclidean space in FL
w width of ED cell (m)
x coordinate (m)
x′ constant (C2 s kmol−1 kg−1)
X input variable in FL
y′ constant (S m2 kmol−1 M−0.5)
Y output of FL
z valence
z′ constant (M−0.5)

Greek letters
˛ cut in FL
ˇ constant (kmol K2/3 s1/3 m−7/3 kg−2/3 A−1)
� constant (s −1)
� ′ constant (s m−1)
ı constant
ε electric permittivity (C2 J−1 m−1)
ε0 permittivity in free space (C2 J−1 m−1)
εr relative permittivity
� Debye–Huckel–Onsager coefficient (S m2 kmol−1 M−0.5)
� current efficiency
� constant
� conductivity (S m−1)
� molar conductivity of ions (S m2 kmol−1)
�M molar conductivity (S m2 kmol−1)
�

◦
M limiting molar conductivity (S m2 kmol−1)


 viscosity (kg m−1 s−1), symmetric Gaussian function in FL
� stoichiometric constant
� density (kg m−3)
� width of the fuzzy set in FL
� mobility of ions (m2 s−1 V−1)
ϕ constant (m4/3 s2/3 kg2/3 A kmol−1 K−2/3)
 Debye–Huckel–Onsager coefficient (M−0.5)
ω constant

Subscript
± cation or anion
0 initial condition
cal calculated
d dilute compartment
exp experimental
m membrane
M molar
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